

Technical Report C/24074/T01

Project

The Laboratory Measurement of Sound Absorption of Panels

Prepared for

Ocee Design

By

Allen Smalls

Published

14 August 2018

Page: 2 of 18

Date: 14/08/2018

Quality Assurance							
Project Title	The Laboratory Measurement of Sound Absorption of Panels						
Client	Ocee Design						
Client Address	Design House Caswell Road Brackmills Industrial Estate Northampton NN4 7PW						
Author	Allen Smalls						
Checker	Richard Critchlow						
Report Number	C/24074/T01						

Page 3 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Summary

Tests have been done in SRL's Laboratory at Holbrook House, Sudbury, Suffolk, to determine the sound absorption of panels in accordance with BS EN ISO 354:2003.

From these measurements the required results have been derived and are presented in both tabular and graphic form in Data Sheets I to 4.

The results are given in 1/3rd octave bands over the frequency range 50Hz to 10kHz, which is beyond that required by the test standard. Measurements outside the standard frequency range are not UKAS accredited.

R.AS

Richard Critchlow Approved Signatory

Allen Smalls Quality Manager For and on behalf of SRL Technical Services Limited Tel: 01787 247595 Email: asmalls@srltsl.com

Test Report No: C/24074/T01

 Page
 4 of 18

 Date:
 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Contents

Summa	ıry	3					
1.0	Details of Measurements	5					
2.0	Description of Test	7					
3.0	Results	8					
Data S	heets I to 4	9					
Appen	dix A - Test ProcedureI	3					
Appen	dix B - Measurement UncertaintyI	5					
Appen	Appendix C – Mounting Method						

Test Report No: C/24074/T01

Page 5 of 18 Date: 14/08/2018 This report shall not be reproc

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

1.0 Details of Measurements

1.1 Location

Sound Research Laboratories

Holbrook House

Little Waldingfield

Sudbury

Suffolk

COI0 0TF

1.2 Test Date

29/06/2018

1.3 Tester

Allen Smalls of SRL Technical Services Limited

1.4 Instrumentation and Apparatus Used

Make	Description	Туре
EDI	Microphone Multiplexer Microphone Power Supply Unit	
Norwegian Electronics	Real Time Analyser	830
Brüel & Kjaer	Windshields Pre Amplifiers	UA0237 2669C
	Microphone Calibrator	4231

1.5

Test Report No: C/24074/T01

Page 6 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

	Omnipower Sound Source	4296		
Larson Davis	12mm Condenser Microphone	2560, 377A60		
Oregon Scientific	Temperature & Humidity & Probe	THGR810		
ΤΟΑ	Graphic Equalizer	E-1231		
QSC Audio	Power Amplifier	RMX 1450		
G.R.A.S	Pre Amplifier	26AK		
References				
BS EN ISO 11654:1997 Sound absorbers for use in buildings. Rating of soun		sound absorption.		
ATSM C423-01	Sound Absorption and sound Absorption Coefficients by the Reverberation Room Method			

BS EN ISO 354:2003 Measurement of sound absorption in a reverberation room

Test Report No: C/24074/T01

Date: 14/08/2018 This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Page 7 of 18

2.0 Description of Test

2.1 Description of Sample

Various panels tested, see section 3 and Data Sheets for more information.

Sampling plan:	Enough for test only							
Sample condition:	New							
Details supplied by:	Ocee							
Sample installed by:	SRL & Ocee							

2.2 Sample Delivery date

28/06/2018

2.3 Test Procedures

The sample was mounted/located and tested in accordance with the relevant standard. The method and procedure is described in Appendix A. The measurement uncertainty is given in Appendix B. The mounting method used is described in Appendix C.

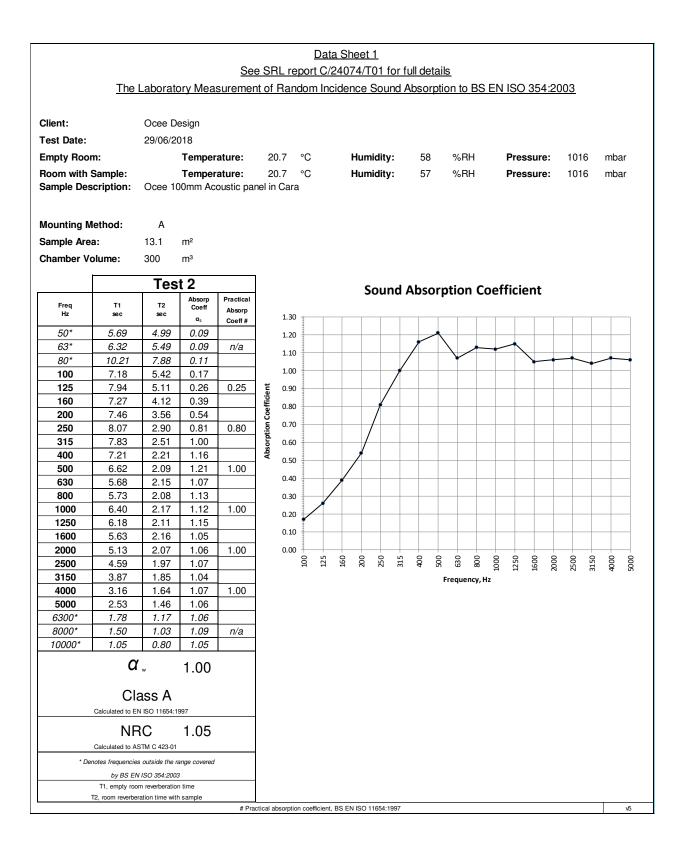
Page 8 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

3.0 Results

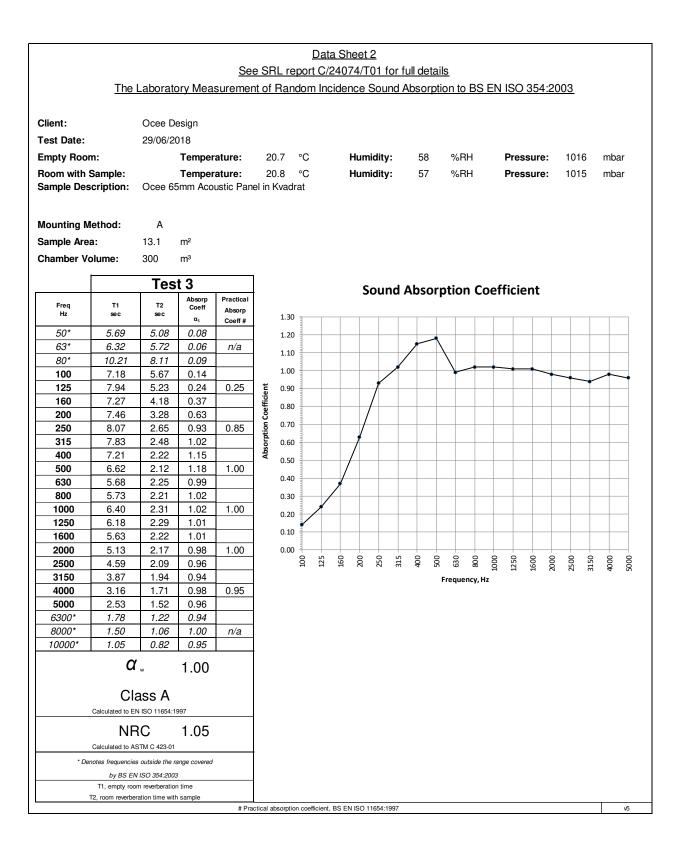
The results of the measurements and subsequent analysis are given in Data Sheets 1 to 4 and summarised below.

Results relate only to the items tested.


SRL Test No.	Description in Brief	۵w
2	Ocee 100mm Acoustic panel in Cara	1.00
3	Ocee 65mm Acoustic panel in Kvadrat	1.00
4	Ocee 65mm Acoustic panel in Cara	1.00
5	Ocee 100mm Acoustic panel in Blazer Lite	1.00

Test Report No: C/24074/T01

Page 9 of 18

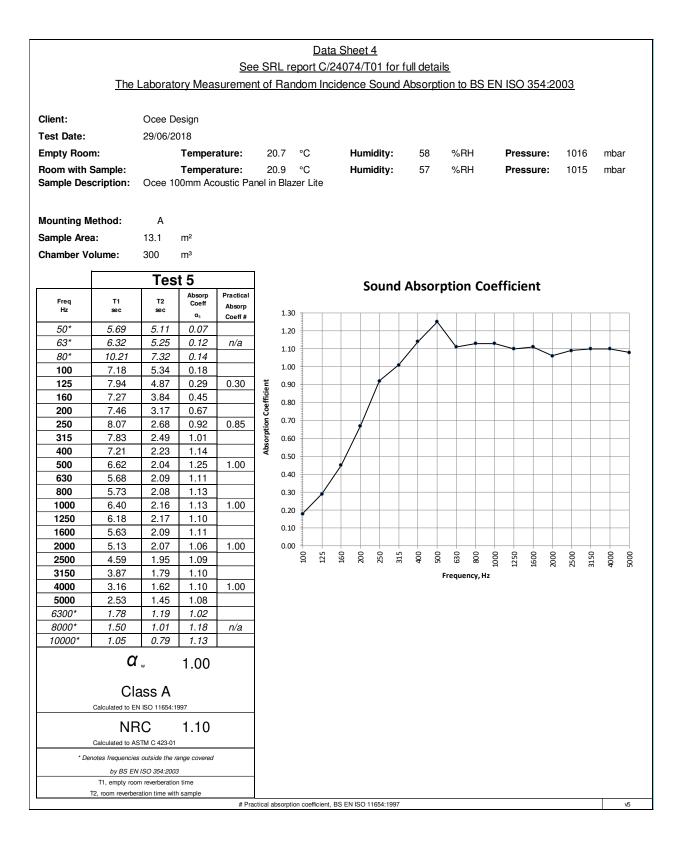

Date: 14/08/2018

Test Report No: C/24074/T01

Page 10 of 18 Date: 14/08/2018

Test Report No: C/24074/T01

Page 11 of 18 Date: 14/08/2018


Data Sheet 3																										
							port C																			
	The	Laborate	ory Mea	suremer	nt of	Ran	dom lı	ncide	nce S	Sound	Abs	orpt	ion to B	<u>S EN</u>	ISO 3	54:20	003									
Client:		Ocee D	esign																							
Test Date:		29/06/2	018																							
Empty Roon	n:		Temper	ature:	2	0.7	°C		Humi	dity:	!	58	%RH		Pressu	ure:	1016	n	nbar							
Room with S	Sample:		Temper	ature:	2	0.8	°C		Humi	dity:	!	57	%RH		Pressu	ure:	1015	n	nbar							
Sample Des	cription:	Ocee 6	5mm Aco	ustic Pan	el in	Cara																				
Mounting M	ethod:	А																								
•			m2																							
Sample Area		13.1	m²																							
Chamber Vo	olume:	300	m ³																							
]		Tes	t 4						¢,	ימיור	ነ እኩ	<u>.</u>	ption (Coof	ficion	+										
Freq	T1	T2	Absorp Coeff	Practical					3	June	, AU	301	PUOLI	LUEI	nciell	i C										
Hz	sec	sec	αs	Absorp Coeff #		1.30	3																			
50*	5.69	5.16	0.07	00011#		1.20																				
63*	6.32	5.64	0.07	n/a								\land														
80*	10.21	8.26	0.09			1.10					1	\frown	\ +	1												
100	7.18	5.80	0.12			1.00				-		+					_	-								
125	7.94	5.55	0.20	0.20	Absorption Coefficient	0.90				,																
160	7.27	4.48	0.32			0.80				\perp																
200	7.46	3.81	0.47							1																
250	8.07	3.06	0.75	0.70		Dtio.	0.70			/	/															
315	7.83	2.71	0.89			0.60			\pm	+		\rightarrow														
400	7.21	2.32	1.08	1.00		0.50																				
500 630	6.62 5.68	2.11 2.15	1.19 1.07	1.00		-	-	-					0.40			\square	_									
800	5.08	2.15	1.07										1	1				0.30		_						
1000	6.40	2.20	1.10	1.00																						
1250	6.18	2.21	1.07			0.20																				
1600	5.63	2.15	1.06			0.10						-														
2000	5.13	2.13	1.01	1.00			I	0.00		-+				-+						<u> </u>						
2500	4.59	2.02	1.02					100	160	200	250	400 400	500	63 0 80 0	1000	1250	2000	2500	3150	4000 5000						
3150	3.87	1.79	1.10										Frequency	, Hz												
4000	3.16	1.62	1.10	1.00																						
5000 6300*	2.53 1.78	1.43 <i>1.18</i>	1.11 <i>1.04</i>																							
8000*	1.78	1.18	1.17	n/a																						
10000*	1.05	0.80	1.06	n/a																						
				1																						
	α	w	1.00																							
		^																								
Class A																										
Calculated to EN ISO 11654:1997																										
NRC 1.00																										
Calculated to ASTM C 423-01																										
* Den	notes frequencies	s outside the r	ange covered																							
by BS EN ISO 354:2003																										
	T1, empty roo																									
1	F2, room reverbe	ration time with	n sample	# Pro	ctical a	absorptio	n coefficie	nt. BS F	N ISO 11	654:1997	,								v5							

Test Report No: C/24074/T01

Page 12 of 18

Date: 14/08/2018

Page 13 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix A - Test Procedure

Measurements of Random Incidence Sound Absorption Coefficients to BS EN ISO 354:2003 - TP14 (Plane Absorbers)

In the laboratory, random incidence sound absorption coefficients are determined from the rate of decay of a sound field in a reverberation room, with and without a test sample installed. The rate of decay is described by the time a sound field takes to decay by 60dB, known as the reverberation time.

The reverberation room is constructed from 215mm brick, which is internally plastered with a reinforced concrete roof and floor. The reverberation room is rectangular, measuring 8.3 metres long, 6.7 metres wide and 5.4 metres high. The volume is 300m³, the total surface area, 275m². From the ceiling hang 10 randomly positioned diffusers, with a total surface area (for one side) of 20m². The room is isolated from the surrounding structure by the use of resilient mountings and seals, ensuring good acoustic isolation.

Using at least two omnidirectional loudspeaker positions, broad band random noise is produced in the room using an electronic generator and power amplifier. When the amplification system is switched off, the decay of sound is filtered into one-third octave band widths and the reverberation times measured. This process is repeated for each of six microphone positions and the values arithmetically averaged to obtain a final value for each frequency.

The sample, which has an area between $10m^2$ and $15.7m^2$, is then laid over a pre-assembled laboratory test rig positioned on the floor of the reverberation room so that no part of it is closer than one metre from any edge of the boundaries. The test rig provides a space beneath the sample, the depth of which can be varied to simulate specific requirements such as the void above a suspended ceiling system. The procedure of measuring the reverberation times then repeated.

The sound absorption coefficients are calculated from the difference in decay rates for each frequency according to the formula:

$$\alpha_s = \frac{A_T}{S}$$

where

- α_{s} \quad is the random incidence absorption coefficient
- A_T is the increase in equivalent sound absorption area of the test specimen (m²)
- S is the area covered by the test specimen (m²)

Page 14 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

The equivalent absorption area of the test specimen is further defined as:

$$A_T = 55.3V \left(\frac{I}{c_2 T_2} - \frac{I}{c_1 T_1}\right) - 4V(m_2 - m_1)$$

where

- V is the volume of the empty reverberation room (m³)
- c1 is the speed of sound in the empty room (m/sec)
- T_1 is the reverberation time in the empty room (sec)
- m₁ is the power attenuation coefficient calculated according to ISO 9613-1 using the climatic conditions that have been present in the empty room during the measurement.

 c_2 , T_2 and m_2 have the same meanings as c_1 , T_1 and m_1 but with the test specimen in the room.

It is occasionally found that the absorption coefficient derived in this manner reaches a value greater than unity. This is impossible, by definition, and investigation has shown that this anomaly is due to diffraction of the impinging sound waves at the edges of the sample. In practical terms this is insignificant.

Page 15 of 18 Date: 14/08/2018 This report shall not be reproduced,

except in full, without written approval of SRL Technical Services Limited

Appendix B - Measurement Uncertainty

BS EN ISO 354:2003 - TP14

I. Introduction

The estimated values of uncertainty are based on a standard uncertainty multiplied by a coverage factor of K = 2, which provides a level of confidence of approximately 95%.

	Expanded uncertainty K = 2, 95%
Frequency, Hz	% of A ₁ or A ₂
100	9.0
125	8.1
160	5.6
200	6.7
250	4.3
315	8.1
400	4.6
500	5.0
630	5.3
800	3.2
1000	3.5
1250	3.1
1600	2.8
2000	2.7
2500	2.2
3150	1.8
4000	1.6
5000	1.6

Table I: Uncertainty For Equivalent Absorption Area Measurement

2. Estimation of Expanded Uncertainty For Sample Equivalent Sound Absorption Area

The expanded uncertainty, U_A ,m² is estimated by using the following formulae:-

Test Report No: C/24074/T01

Page 16 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

$$U_{A} = \sqrt{\left(\frac{uA_{1}}{100}\right)^{2} + \left(\frac{uA_{2}}{100}\right)^{2}}$$

where

- $U_{\text{A}}~$ is the expanded uncertainty for the sample equivalent sound absorption area, for K = 2, 95%, m^2
- u is the estimated expanded uncertainty for the equivalent sound absorption area, taken from Table I above, K = 2, 95%, % of A_1 or A_2
- A₁ is the equivalent sound absorption area of the empty room, m²
- A_2 is the equivalent sound absorption area of the room with the sample, m^2

3. Estimation of expanded Uncertainty For Sound Absorption Coefficients

The expanded uncertainty for sound absorption coefficients, U_{α_s} , is estimated using the following formulae:-

$$U_{\alpha_s} = \frac{\alpha_s U_A}{A}$$

where

- U_{α_s} $\;$ is the expanded uncertainty for sound absorption coefficients, K=2, 95%
- α_s is the sound absorption coefficient
- $U_A \,$ is the expanded uncertainty for the sample equivalent sound absorption area, K=2, 95%, $\,m^2$
- A is the sample equivalent sound absorption area, m²

Page 17 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix C – Mounting Method

Descriptions of Test Specimen Mountings for Sound Absorption Tests

BS EN ISO 354:2003 describes various test specimen mountings. The methods of mounting used for these tests are briefly described as follows:

Type A Mounting

Test specimen placed directly against a room surface. The specimen may be held in place with adhesive or mechanical fasteners providing there is no resulting air space between the specimen and room surface.

Test Report No: C/24074/T01

Page 18 of 18 Date: 14/08/2018

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Sudbury Consultancy

Holbrook House Little Waldingfield Sudbury Suffolk CO10 0TF Tel: +44 (0)1787 247595

Birmingham Consultancy

Cornwall Buildings 45 Newhall Street Birmingham B3 3QR Tel: +44 (0)121 270 6680

Manchester Consultancy

Suite 1.9, Canada House Chepstow Street Manchester MI 5FW Tel: +44 (0)161 929 5585

South Africa Consultancy

102 Heritage House 20 Dreyer Street Claremont Cape Town 7708 South Africa Tel: +27 (0)21 205 9201

London Consultancy

Citypoint, 12th Floor I Ropemaker Street London EC2Y 9HT Tel: +44 (0)207 251 3585

Laboratory

Holbrook House The Street Sudbury Suffolk CO10 0TF Tel: +44 (0)1787 247595

Website: www.srltsl.com e-mail: srl@srltsl.com

SRL offers services in:

Acoustics Air Quality Air Tightness BREEAM Compliance Fire Laboratory and Site Testing

Registered Name and Address:

SRL Technical Services Limited Holbrook House Little Waldingfield Sudbury Suffolk CO10 0TF

Registered Number: 907694 England

